Desenho in silico de sgRNAs e donor DNAs para deleção de enzimas relacionadas ao fenótipo de resistência do Trypanosoma cruzi ao benzonidazol
Resumo
A doença de Chagas, causada pelo protozoário Trypanosoma cruzi, afeta milhões de pessoas, principalmente na América Latina. Seu tratamento é baseado no uso clínico do benzonidazol (BZ) ou nifurtimox e possui limitações, como baixa eficácia de cura principalmente na fase crônica da doença e ocorrência de parasitos resistentes a ambos compostos. Várias enzimas têm sido relacionadas com o fenótipo de resistência dos parasitos a esses fármacos, tais como a nitroredutase 1, a aldo‐keto redutase e a álcool desidrogenase. A fim de melhor compreender o papel dessas enzimas no fenótipo de resistência do T. cruzi ao BZ, propomos utilizar o CRISPR/Cas9 para realizar a deleção dessas enzimas. Foram realizadas análises in silico para o desenho dos sgRNAs e donor DNAs por meio da avaliação do número de cópias de cada gene na cepa CL Brener usando o tBLASTn, a construção dos sgRNAs e dos donor DNAs pela ferramenta EuPaGDT e o alinhamento global das cópias pelo Needle (EMBOSS). Foram encontradas duas sequências do gene NTR-1, duas para a ADH e pelomenos nove para a AKR, sendo escolhidos três sgRNAs para reconhecimento específico de cada uma das cópias. Devido às características dos sgRNAs selecionados e eficiência do protocolo de CRISPR/Cas9, acreditamos que será possível realizar a deleção dos genes NTR-1 e ADH na cepa CL Brener de T. cruzi utilizando essa metodologia caso não sejam genes essenciais para o parasito. Já no caso da AKR mais análises serão necessárias para conhecer o número exato de cópias do gene.
Palavras-chave: Trypanosoma cruzi. Resistência ao benzonidazol. CRISPR/Cas9. Deleção gênica.
Palavras-chave
Texto completo:
PDFReferências
ALTSCHUL, S. F. et al. Basic local alignment search tool. Journal of Molecular Biology, v. 215, n. 3, p. 403–410, 1990.
ANDRADE, H. M. et al. Proteomic analysis of trypanosoma cruzi resistance to benznidazole.Journal of Proteome Research, v. 7, n. 6, p. 2357–2367, 2008.
ARGOLO, A. M. et al. Doença de Chagas e seus principais vetores no Brasil. [s.l: s.n.].
ARNER, E. et al. Database of Trypanosoma cruzi repeated genes: 20 000 additional gene variants. BMC Genomics, v. 8, p. 1–15, 2007.
ASH, C.; JASNY, B. R. Trypanosomatid genomes. Science, v. 309, n. 5733, p. 399–400, 2005.
ASLETT, M. et al. TriTrypDB: A functional genomic resource for the Trypanosomatidae. Nucleic Acids Research, v. 38, n. SUPPL.1, p. 457–462, 2009.
ATWOOD, J. A. et al. Microbiology: The Trypanosoma cruzi proteome. Science, v. 309, n. 5733, p. 473–476, 2005.
BARRANGOU, R.; DOUDNA, J. A. Applications of CRISPR technologies in research and beyond. Nature Biotechnology, v. 34, n. 9, p. 933–941, 2016.
BRISSE, S.; BARNABÉ, C.; TIBAYRENC, M. Identification of six Trypanosoma cruzi phylogenetic lineages by random amplified polymorphic DNA and multilocus enzyme electrophoresis. International Journal for Parasitology, v. 30, n. 1, p. 35–44, 2000.
BOLOTIN, A. et al. Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology, v. 151, n. 8, p. 2551–2561, 2005.
BURLE-CALDAS, G. A. et al. Assessment of two CRISPR-Cas9 genome editing protocols for rapid generation of Trypanosoma cruzi gene knockout mutants. International Journal for Parasitology, v. 48, n. 8, p. 591–596, 2018.
CAI, Y. et al. CRISPR/Cas9-mediated deletion of large genomic fragments in Soybean. International Journal of Molecular Sciences, v. 19, n. 12, 2018.
CAMIOLO, S.; PORCEDDU, A. Brachypodium Genomics. New York, NY: Springer New York, 2018. v. 1667
CAMPOS, F. M. F. et al. Characterization of a gene encoding alcohol dehydrogenase in benznidazole-susceptible and -resistant populations of Trypanosoma cruzi. Acta Tropica, v. 111, n. 1, p. 56–63, 2009.
CAMPOS, M. C. O. et al. Benznidazole-resistance in Trypanosoma cruzi: Evidence that distinct mechanisms can act in concert. Molecular and Biochemical Parasitology, v. 193, n. 1, p. 17–19, 2014.
CHAGAS, C. “Nova Especie Morbida Do Homem Produzida Por Um Trypanozoma (Trypanozoma Cruzi).” Brazil-Medico, no. 16, 1909.
COURA, J. R. Tripanosomose, doença de chagas. Ciênc. cult. (Säo Paulo), v. 55, n. 1, p. 30–33, 2003.
CRUZ, A. K.; TITUST, R.; BEVERLEY, S. M. Plasticity in chromosome number and testing of essential genes in Leishmania by targeting (tetraploid/population biology/aneuploidy/dihydrofolate reductase-thymidylate synthase/protozoan parasite). Proc. Nati. Acad. Sci. USA, v. 90, n. February, p. 1599–1603, 1993.
DAROCHA, W. D. et al. Tests of cytoplasmic RNA interference (RNAi) and construction of a tetracycline-inducible T7 promoter system in Trypanosoma cruzi. Molecular and Biochemical Parasitology, v. 133, n. 2, p. 175–186, 2004.
DAROCHA, W. D. et al. Expression of exogenous genes in Trypanosoma cruzi: Improving vectors and electroporation protocols. Parasitology Research, v. 92, n. 2, p. 113–120, 2004.
DELTCHEVA, E. et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature, v. 471, n. 7340, p. 602–607, 2011.
EID, J. et al. Real-time DNA sequencing from single polymerase molecules. Science, v. 323, n. 5910, p. 133–138, 2009.
FILARDI, L. S.; BRENER, Z. Susceptibility and natural resistance of Trypanosoma cruzi strains to drugs used clinically in Chagas disease. Transactions of the Royal Society of Tropical Medicine and Hygiene, v. 81, n. 5, p. 755–759, 1987.
GARAVAGLIA, P. A. et al. Identification, cloning and characterization of an aldo-keto reductase from Trypanosoma cruzi with quinone oxido-reductase activity. Molecular and Biochemical Parasitology, v. 173, n. 2, p. 132–141, 2010.
GARCIA-SALCEDO, J. A. et al. New approaches to overcome transport related drug resistance in trypanosomatid parasites. Frontiers in Pharmacology, v. 7, n. SEP, p. 1–14, 2016.
GARNEAU, J. E. et al. The CRISPR/cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, v. 468, n. 7320, p. 67–71, 2010.
GASIUNAS, G. et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proceedings of the National Academy of Sciences of the United States of America, v. 109, n. 39, p. 2579–2586, 2012.
GONZÁLEZ, L. et al. Aldo-keto reductase and alcohol dehydrogenase contribute to benznidazole natural resistance in Trypanosoma cruzi. Molecular Microbiology, v. 106, n. 5, p. 704–718, 2017.
GROOM, Z.; PROTOPAPAS, A. D.; ZOCHIOS, V. Tropical diseases of the myocardium: A review. International Journal of General Medicine, v. 10, p. 101–111, 2017.
HAMILTON, P. B. et al. Identification and lineage genotyping of South American trypanosomes using fluorescent fragment length barcoding. Infection, Genetics and Evolution, v. 11, n. 1, p. 44–51, 2011.
HORVATH, P.; BARRANGOU, R. CRISPR/Cas, the immune system of Bacteria and Archaea. Science, v. 327, n. 5962, p. 167–170, 2010.
ISHINO, Y. et al. Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isoenzyme conversion in Escherichia coli, and identification of the gene product. Journal of Bacteriology, v. 169, n. 12, p. 5429–5433, 1987.
JANSEN, R. et al. Identification of genes that are associated with DNA repeats in prokaryotes. Molecular Microbiology, v. 43, n. 6, p. 1565–1575, 2002.
JINEK, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, v. 337, n. 6096, p. 816–821, 2012.
KRUSKAL, J. B. An Overview of Sequence Comparison: Time Warps, String Edits, and Macromolecules. SIAM Review, v. 25, n. 2, p. 201–237, 1983.
LANDER, N.; CHIURILLO, M. A.; DOCAMPO, R. Genome Editing by CRISPR/Cas9: A Game Change in the Genetic Manipulation of Protists. Journal of Eukaryotic Microbiology, v. 63, n. 5, p. 679–690, set. 2016.
LANDER, N. et al. CRISPR/Cas9-induced disruption of paraflagellar rod protein 1 and 2 genes in Trypanosoma cruzi reveals their role in flagellar attachment. mBio, v. 6, n. 4, p. 1–12, 2015.
LANDER, N. et al. CRISPR/Cas9-mediated endogenous C-terminal tagging of Trypanosoma cruzi genes reveals the acidocalcisome localization of the inositol 1,4,5-trisphosphate receptor. Journal of Biological Chemistry, v. 291, n. 49, p. 25505–25515, 2016.
LEWIS, M. D. et al. Recent, independent and anthropogenic origins of Trypanosoma cruzi hybrids. PLoS Neglected Tropical Diseases, v. 5, n. 10, 2011.
LOURDES, R. DE A. E. Aspectos parasitológicos, imunológicos e moleculares da resposta dependente do receptor do tipo Toll 9 na infecção experimental por cepas de diferentes linhagens de Trypanosoma cruzi. [s.l.] Universidade Federal de Minas Gerais, 2013.
MCCALLA, D. R.; REUVERS, A.; KAISER, C. Breakage of Bacterial DNA by Nitrofuran Derivatives. Cancer Research, v. 31, n. 12, p. 2184–2188, 1971.
MEDEIROS, L. C. S. et al. Rapid, selection-free, high-efficiency genome editing in protozoan parasites using CRISPR-cas9 ribonucleoproteins. mBio, v. 8, n. 6, p. 1–15, 2017.
MEJIA, A. M. et al. Benznidazole-resistance in trypanosoma cruzi is a readily acquired trait that can arise independently in a single population. Journal of Infectious Diseases, v. 206, n. 2, p. 220–228, 2012.
MURTA, S. M. F. et al. Deletion of copies of the gene encoding old yellow enzyme (TcOYE), a NAD(P)H flavin oxidoreductase, associates with in vitro-induced benznidazole resistance in Trypanosoma cruzi. Molecular and Biochemical Parasitology, v. 146, n. 2, p. 151–162, 2006.
NAEEM, M. et al. Latest Developed Strategies to Minimize the Off-Target Effects in CRISPR-Cas-Mediated Genome Editing. Cells, v. 9, n. 7, p. 1–23, 2020.
NEEDLEMAN, S. B.; WUNSCH, C. D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology, v. 48, n. 3, p. 443–453, 1970.
HSU, P. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology, v. 31, n. 9, p. 827–832, 2013.
PEDROSO, A.; CUPOLILLO, E.; ZINGALES, B. Evaluation of Trypanosoma cruzi hybrid stocks based on chromosomal size variation. Molecular and Biochemical Parasitology, v. 129, n. 1, p. 79–90, 2003.
PENG, D. et al. CRISPR-Cas9-mediated single-gene and gene family disruption in Trypanosoma cruzi. mBio, v. 6, n. 1, p. 1–11, 2015
PENG, D.; TARLETON, R. EuPaGDT: a web tool tailored to design CRISPR guide RNAs for eukaryotic pathogens. Microbial Genomics, v. 1, n. 4, p. 1–7, 2015.
PEREIRA, B. I. et al. TRANSFUSÃO DE SANGUE Qual o Risco nos Países Não Endémicos ? Acta Medica Portuguesa, n. December, p. 897–906, 2011
PÉREZ-MOLINA, J. A.; MOLINA, I. Chagas disease. The Lancet, v. 391, n. 10115, p. 82–94, 2018.
PORCEDDU, S. C. AND A. Identification of Pseudogenes in Brachypodium distachyon Chromosomes. v. 1667, n. page 114, p. 149–171, 2017.
PETRAVICIUS, P. O. et al. Mapping benznidazole resistance in trypanosomatids and exploring evolutionary histories of nitroreductases and ABCG transporter protein sequences. Acta Tropica, v. 200, n. April, p. 105161, 2019.
REID, M. F.; FEWSON, C. A. Molecular characterization of microbial alcohol dehydrogenases. Critical Reviews in Microbiology, v. 20, n. 1, p. 13–56, 1994.
ROBERTS, A. J. et al. A role for trypanosomatid aldo-keto reductases in methylglyoxal, prostaglandin and isoprostane metabolism. Biochemical Journal, v. 475, n. 16, p. 2593–2610, 2018.
SANDER, J. D.; JOUNG, J. K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, v. 32, n. 4, p. 347–350, 2014.
SARMENTO, R. R. Interação do Trypanosoma cruzi com células da resposta imune inata. [s.l: s.n.].
SANTI, A. M. M. et al. The role of prostaglandin F(2)alpha synthase in Trypanossoma cruzi CL Brener drug resistance. in prep
STREETER, A. J.; HOENER, B. ANN. Evidence for the Involvement of a Nitrenium Ion in the Covalent Binding of Nitrofurazone to DNAPharmaceutical Research: An Official Journal of the American Association of Pharmaceutical Scientists, 1988.
STURM, N. R. et al. Evidence for multiple hybrid groups in Trypanosoma cruzi. International Journal for Parasitology, v. 33, n. 3, p. 269–279, 2003.
THOMPSON, J. D.; HIGGINS, D. G.; GIBSON, T. J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, v. 22, n. 22, p. 4673–4680, 1994.
TROCHINE, A. et al. Benznidazole Biotransformation and Multiple Targets in Trypanosoma cruzi Revealed by Metabolomics. PLoS Neglected Tropical Diseases, v. 8, n. 5, 2014.
URBINA, J. A.; DOCAMPO, R. Specific chemotherapy of Chagas disease: Controversies and advances. Trends in Parasitology, v. 19, n. 11, p. 495–501, 2003.
VERLI, H. Bioinformática: da Biologia à Flexibilidade Molecular. [s.l: s.n.]. v. 53
WEATHERLY, D. B.; BOEHLKE, C.; TARLETON, R. L. Chromosome level assembly of the hybrid Trypanosoma cruzi genome. BMC Genomics, v. 10, p. 1–13, 2009.
WESTENBERGER, S. J. et al. Two hybridization events define the population structure of Trypanosoma cruzi. Genetics, v. 171, n. 2, p. 527–543, 2005.
WIEDENHEFT, B.; STERNBERG, S. H.; DOUDNA, J. A. RNA-guided genetic silencing systems in bacteria and archaea. Nature, v. 482, n. 7385, p. 331–338, 2012.
WILKINSON, S. R. et al. A mechanism for cross-resistance to nifurtimox and benznidazole in trypanosomes. Proceedings of the National Academy of Sciences of the United States of America, v. 105, n. 13, p. 5022–5027, 2008.
WILKINSON, S. R.; KELLY, J. M. Trypanocidal drugs: Mechanisms, resistance and new targets. Expert Reviews in Molecular Medicine, v. 11, n. October 2009, 2009.
ZHANG, X. H. et al. Off-target effects in CRISPR/Cas9-mediated genome engineering. Molecular Therapy - Nucleic Acids, v. 4, n. 11, p. e264, 2015.
ZINGALES, B. et al. A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Corrosion and Protection, v. 30, n. 6, p. 432–436, 2009
ZINGALES, B. et al. The revised Trypanosoma cruzi subspecific nomenclature: Rationale, epidemiological relevance and research applications. Infection, Genetics and Evolution, v. 12, n. 2, p. 240–253, 2012.